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SUMMARY

Wave guides play a significant role in microwave space communication sys-
tems. The attenuation per unit length of the guide depends on its construction
and design frequency range. A finite element Galerkin formulation has been
developed to study TM electromagnetic propagation in compiex two-dimensional
absorbing wave guides. The analysis models the electromagnetic absorptive
characteristics of a general wave guide which could be used to determine wall
Tosses or simulate resistive terminations fitted into the ends of a gutde. It
is believed that the general conclusions drawn by using this simpler two-
dimensional geometry will be fundamentally the same for other geometries.

In formulating the finite element solution, the continuous electromag-
netic field is divided into a number of triangular discrete areas staked out
by nodal points which are spread through out the field. The nodal points can
be placed at any position desired. Thus, the finite element formulation can
readily handle geometrical complications such as axial and transverse vari-
ations*in wall properties as well as cross-sectional area variations. The
governing electromagnetic finite element equations and the appropriate bound-
ary conditions are presented for a finite duct with known incident modes. The
entrance and exit boundary conditions are developed by coupling the finite
element solutions to the eigen functions of an infinite uniform perfect con-
ducting duct. Example solutions are presented for electromagnetic propagation
with perfect conducting and absorbing duct waills.

INTRODUCTION

Wave guides play a significant role in microwave space communication sys-
tems. ODepending on the material properties of the wave guide and its design
frequency range, the guide will attenuate a signal transmitted in the guide
(ref. 1, p. 295). In general, losses in wave qguides are undesirable; however,
in power measurement applications, electromagnetic wave guides are sometimes
fitted with fixed resistive terminations, movable vane or flop attenuators
(ref. 1, p. 326) to absorb radiation and reduce reflections. To better under-
stand the microwave absorption process, in the present paper a finite element
Galerkin formulation has been developed to study the power absorption charac-
teristics of an electromagnetic wave guide.

The numerical program to be presented herein is complimented by Grant
effort at Ohio State University, the University of I11inois, and Northwestern
University. The work at Ohio State and I1linois is primarily analytical in
nature (ref. 2) while the research at Northwestern employs the transient finite
difference technique (refs. 3 and 4). In addition, Rice (ref. 5) at NASA Lewis
is developing simple analytical correlation for electronic properties which



produce the highest possible attenuation for a single mode in an infinitely
long duct. Such an analysis is extremely useful for a numerical program,
since the analysis gives a reasonable estimate of the electrical properties
which will produce significant attenuation.

The finite element solution developed herein models the variable property
Helmholtz equation in a rectangular two-dimensional wave guide with complex
structural wall boundary conditions and multiple mode inputs. In the finite
element solution, the continuous electromagnetic field is divided into a num-
ber of triangular discrete areas staked out by nodal points which are spread
throughout the field. Since the nodal points can be placed at any positioned
desired, the finite element formulation can readily handle geometrical compli-
cations such as axial variations in wall properties as well as cross-sectional
area variations. This finite element solution bypasses the conventional
eigenvalue problem with its associated modes which have been considered in
earlier works on electromagnetic propagation in ducts (ref. 6, p. 88).

The inlet and exit boundary conditions associated with the finite element
analysis of electromagnetic propagation must be flexible enough to account for
reflection of energy which can occur from wall changes inside the guide or
from abrupt exit terminations. The appropriate boundary conditions are simi-
lar to those associated with flow gust disturbances, duct acoustics (ref. 7),
and thermal wave propagation (ref./8). These problems occur in unsteady aero-
dynamics. An addition modivation for the present study is the continuing
interest at NASA Lewis in numerical modeling of unsteady aerodynamics and
general wave propagation in ducts.

In setting up the inlet and exit boundary conditions, the variable prop-
erty absorbing portion of the wave guide is assumed to be joined by uniform,
infinitely long, and perfectly conducting entrance and exit ports. In the
entrance port, a known source of electromagnetic energy is assumed to be inci-
dent on the complex absorbing region which is to be modeled by the finite ele-
ment analysis. For a single dominant input mode, Silvester, and Ferrar
(ref. 6, p. 177) developed some mathematical constraints for the entrance and
exit conditions. For this paper, however, the entrance and exit boundary con-
ditions are developed for multimode propagation by coupling the finite element
solutions to the complete set of eigen functions of a uniform conducting duct.
1n acoustics, numerical calculations using this boundary constraint were found
to be in excellent agreement with experimental results (ref. 9).

First, the governing electromagnetic equation and the appropriate bound-
ary conditions are presented. Next, the finite element modeiing is presented.
Immediately following the mathematical development, numerical validation exam-
ples are presented and compared with known analytical results. Finally, the
last set of example problems treat electromagnetic propagation with an absorb-
ing boundary.

NOMENCLATURE
A} mode amplitude of plus going entrance waves, equation (29)
Ag mode amplitude of reflected negative going entrance waves,

equation (29)




B magnetic flux density

B mode amp11tudeiof plus going exit waves, equation (33)

Bén modified mode amplitude of plus going exit waves, equation (52)
b* . characteristic duct height

ba dimensionless entrance height b,/b'

bp dimensionless exit height by/b'

o speed of 1ight in vacuum

Ex(x,y,z,t) electric field, equation (6)

E harmonic electric field vector, E(x,y,Z)
ex,ey, €z unit vectors in coordinate directions

F right hand side, equation (80)

f dimensionless frequency, equation (9)

Hi(x,y,z,t) magnetic intensity, equation (6)

H harmonic magnetic intensity vector, H(x,y,z), equation (8)

Hy x component of magnetic intensity

Hio maén1tude of incident magnetic intensity, equation (92).

Hy3 incident magnetic intensity, equation (91)

Hxr reflected magnetic intensity, equation (91)

Hro magnitude of reflected magnetic intensity, equation (93)

Hxt transmitted magnetic intensity, equation (94)

Hto magnitude of transmitted mangetic intensity, equation (94)

IHxmax | maximum value of magnitude of magnetic intensity in plotting -
domain, equation (106)

Ime1n| minimum value of magnitude of magnetic intensity in plotting domat
n, equation (106)

Hé normalizing magnitude of magnetic intensity

ﬁ; finite element approximation to Hy

I total number of line increments, equation (46)

Im imaginary part
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K] global stiffness matrix, equation (80)

[k]e element stiffness matrix, equation (76)

Kﬁ?} element stiffness coefficient, equation (77)

k wave number, equation (28)

kzn axial modal wave number, equation (30)

ke element modal wave number, equation (78)

L dimensionless length, L'/b'

Lg position of material change, see equation (99)

M ' number of elements

m | mode number, equation (48)

N number of nodes

Nm number of modes

N1,N2,N3 local interpolation shape functions

n mode number, equation (29)

n outward normal unit vector

Pave Poynting vectors, equation (87)

PT total power transferred, equation (88)

R residual error, equation (60)

Re real part

S length of 1ine segment on boundary

t dimensionless time, equation (5)

v vector quantity, equation (64)

Wy weight, equation (58)

X dimensionless transverse distance, x'/b‘', equation (7)
y dimensionless transverse distance, y'/b', equation (7)
z dimensioniess axial distance, z'/b', equation (7)
o damping coefficient, equation (96)
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X,¥,2Z

(1)
(2)

()

propagation coefficient, equation (96)
reflection coefficient, equation (101)
complex propagation constant, equation (92)
dielectric constant, ¢'/¢g

permittivity in entrance duct
permittivity

permittivity in vacuum

conductance permittivity, equation (12)
total permittivity, equation (12)
impedance, equation (13)

permeability, w'/ug

dimensional permeability

permeability in vacuum

conductance, equation (7)

transmisston coefficients, equation (102)
global unknown vector, equation (79)
scalar, equation (62)

angular velocity, equation (9)

Subscripts

scalar vector components

Superscripts
region 1
region 2
complex conjugation
dimensional quantity
transpose

vector quantity



GOVERNING EQUATION - AND MODEL
Basic Model

Consider an electromagnetic wave propagating from a transmitting antenna
and incident on a two-dimensional wave guide as shown in figure 1. As the wave
encounters the inlet, energy will be diffracted from the 1ip and redirected
into space, while some energy will couple to the duct modes and be transmitted
into the guide. Inside the guide, diffraction, absorption, and reflection

will occur at variable property absorbing regions. Finally, energy will be
transmitted down the duct and some will be reflected back out the inlet.

The present paper will focus on the interaction of propagating duct modes
with the wall as shown in figure 2. The model is composed of three regions.
In the uniform, infinitely long and perfectly conducting entrance and exit
regions, the exact solution of the governing differential equations can be
easily written in terms of the duct modes. In the absorbing variable property
region of figure 2, the finite element analysis is employed to determine the
field in the variable property nonuniform regions. As previously discussed,
the transmitting antenna, (see fig. 1), sends electromagnetic waves into the
guide which are either reflected, absorbed, or transmitted in the absorbing
region. Electromagnetic mode reflection at the iniet to the duct absorbing
region and the transmission at the outlet of the absorbing region are modeled
by matching the finite element solution in the interior of the nonuniformity
to analytical eigenfunctions expansions in the uniform inlet and outlet ducts.
This permits a multimodal representation accounting for reflection and mode
conversion by the nonuniformity (ref. 9).

MAXWELL'S EQUATION

The governing differential equations describing the propagation of elec-
tromagnetic energy are the two Maxwell's equations.

) c ' ' ' 1 _ —a— (XY ] ' |
Vx By (xyhhzt,th) = - T wtHE (X2t (1)

- FY -
VixHD (x',y', 20t = TEL(X,Y L EY) ¢ e et BNy, 20t (2)

In the foregoing equations, the prine, ', is used to denote a dimensional
quantity. These and all other symbols used in the report are defined in the
Nomenclature. Vector equations (1) and (2) represent six scalar equations
needed to determine the six unknowns scalars E%x(x',y',z',t'),

By (X'oyh 2t ), By (xtyt 2t b)), H (xhyt,zt,th), Ry (x',yt, 2ttt

and th(x',y',z'.t'). The subscript t indicates time gependent fields.

Later, when the assumption of harmonic time dependence is assumed, the sub-
script t will be dropped.

The nondimensionalization begins with the dimensionless magnetic field
Hé(x',y'.z',t'). permittivity ¢', permeability y', and electric field

E%(x',y',z',t') and introduces their nondimensional equivalents (no primes).




The scaling factor are the entrance duct height b', permittivity of a vacuum
¢', permeability of a vacuum u', velocity of 1ight in a vacuum c¢', and

0
some magnitude of magnetic intensity Hé‘ Using these parameters, the
dimensionless Maxwell's equations become

- ‘L -
VXEt(x,y,Z,t) = at th(X,y,Z.t) (3)

UxH (x,Y,2,t) = o B (x,y,2,t) + o 51 CE¢(X,¥,2,1) (4)

where ¢ 1s the dielectric constant with the following dimensionless quanti-
tative defined:

Ay(x,y,2,8,) = B2l gy 1) - \/— Elxlayrat ) (6)
0 0
c = d::: X = %':- %% Z = ;_: (7)
€0"0

As a further simplification, for harmonic steady state analysis it is
usually assumed .

Hxy,2,t) = fy,2) e300 < fiexy, et et @

where the dimensionless frequency is defined
f=-—_;' W=, w=2%f (9)

Similar assumptions for E are also employed. Substituting equations (8) and
(9) into equations (3) and (4) yields

UXE = -jouH (10)

VxH

jchE (11)
where the total permittivity includes conduction

eT = € -Jeg (12)

e o= ore (13)

The magnetic and electric fields are now considered to be harmonic spatially
dependent variables.



NONHOMOGENEOUS VARIABLE PROPERTY WAVE EQUATION

The number of dependent variables can be reduced by combining Maxwell's
equations (10) and (11) into a single wave equation. This operation will lead
to a 50 percent reduction of computer storage requirements. It is also desir-
able to develop a wave equation that could be used for varying media proper-
ties so that no special treatment of the interface between materials 1is
required. That is, the same equations apply in the duct and in the absorber
region and only the material properties are changed.

Rewriting equation (11),

vxH
=E (14)
jwcT
and taking the curl
uxh | _
X [j“cT ] = UxE (15)

The constants Jjw are independent of space and can be pulled out the curl
operator in equation (15); however, ¢T must remain inside since e1 is now
assumed a function of the spatial dimensions.

5]; w[%:—ﬁ]:vﬁ . (16)

Substituting equation (16) into equation (10) yields our nonhomogenous
governing wave equation.

X [!Lﬂ] = uzuﬁ (17)
‘T

TM VARIABLE PROPERTY2D WAVE EQUATION

As customary in electromagnetics as well as fluid mechanics and heat
transfer (ref. 10), simple inlet profiles of the dependent variable are com-
monly assumed. Herein, transverse magnetic (TM) waves will be assumed to
represent the input electromagnetic modes propagating down the entrance duct
towards the nonuniform variable property section of the duct. The assumption
is made that only one component of the H vector will exist in the problem
domain, that is,

H(y,z) = Hy(y,2)e, (18)

where ey 1s a unit vector in the x direction (into the paper as shown in
fig. 3). The magnitude of the single x component of the vector H depends
only on the two spatial dimensions y and z. The question remains, however,
would a z component of the magnetic field be generated in the the variable
property region.




The validity of assumption (18) can be verified by consideration of the
magnetic source equation (divergence equation);

ve.B=0 (19)

where B 1s the magnetic flux density, a vector quantity defined by

Bx = u(y,z)Hy (20)

Recall, the above equation can be derived directly from Maxwell's first two
equations (ref. 7, p. 280). Combining equations (19) and (20) and using the
usual vector identities (ref. 7, p. 578) equation 19 can be rewritten as

u(y,z)V « A + A« wu(y,2z) =0 (21)
Substituting in equation (18) into equation (21) yields

2 oy oy
o [Hx(¥, 2]+ H (y,2) ex - [ay ey + 3, ez] =0 (22)

Since all thé terms on the left hand side of equation (22) are identical to

zero, equation (18) is a valid solution to the problem, independent of property
and geometry changes.

Using equation (18) to evaluate the term in brackets in equation (17)
yields

H
UxH 1 3 x 9 X
— =2 —— e - T8 (23)
€T €T az y oy z

Next, the complete expression for the left hand side of equation (17) is deter-
mined by taking the curl of equation (23), as follows,

Vx[ﬂﬂ_é__l__m_X+§__La_H_x . (28)
€1 ay €y ay oz €7 -} 4 X

Finally, substituting equation (24) for the left hand side of equation (17)
yields the scalar wave equation,

9 1 aHx +3 (] aHx 2
ay \ew dy ) oazl\ecaz ) t e wi =0 (23)
T T
In vector form,

1 2
V. :; VHX +w pHx =0 (26)

Equation (26) represents the governing wave equation to be solved by
finite element theory.



UNIFORM DUCT ANALYTICAL SOLUTIONS

The analytical solutions of equation (26) for wave propagation in the
uniform perfect conducting inlet and exit ports will be employed to give the
proper termination boundary conditions for the finite element region. The
analytical solution for TM waves traveling between parallel plates is standard
textbook material (ref. 11, p. 458) and quite simple in form. Consequently,
these solutions will now be presented before the complete discussion of bound-
ary conditions associated with the finite element solution in the variable
property region.

In the entrance and exit regions, the medium properties are assumed con-
stant and real (s = 0) such that the wave equation (26) reduces to

V2H, + k2Hx =0 (217)
where the free medium wave number k equals
k = w.fue {28)

In the anaiyt1ca1 entrance region, the eigen value solution of equation (27)
yields (ref. 11, p. 458) for the coordinate system shown in figure 3.

Nm Nm

Hxa = E A; cos( n B 1)w y)e'sznz * A ; cos(Lﬂ—g—lll y)e+jkznz (29)
n=1 a n=1 a

For the ejwt time dependence used here, equation (8), the A; e'sznz term

represents a wave propagating in the positive z direction while the Ap ejkznz

represent a wave moving in the negative =z direction (exactly opposite would
occur had a e-JWt time dependence been assumed, see reference 11, p. 308.

The axial wave number k,, 1in equation (29) is

n - 1)w\2 Nw
- kJ -( "k ) <_bak) < (30)
2
(n - 1)«) nw
\/( bk -1 (bak> > 1 (31

Equation (31) represents the condition where the mode is cut-off (nonpropa-
gating). The negative sign is chosen to produce mode decay in the positive
direction for the A* modes and mode decay in the negative direction for the
A- modes. Since the characteristic duct height b' wil) be set equal to the
entrance duct height, b, will have a numerical value of unity.

kzp = 3K

The modal expression represented by equation (29) has been transacted to
a total of Nm modes of the infinite number possible. Thus, a total of
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N_ unknown modal amplitudes A., A., . . . A, have been introduced. N
m 1 Nm m

constraint equations will be required to determine each of these unknown
reflection coefficients. The equations used to difine these coefficients will
be introduced in the following section on boundary conditions.

The gradient of Hyxy 1in the axial direction will play a major role in
the finite element solution to be presented. The gradient is written as

aH i | |
xa_E: + (n - Vw -k 2z
real -jAnkzn cos( ba y)e zn
: n=1 .
N
m
+ E jA;kz cos(UL;;lll y>e+jkznz (32)
n ba
n=1
Finally, in the exit port, a similar solution of the following form exits
N
m .
H, = 8% cos (n- V= y e'sznz (33)
xb n bb
n=1
and
N
m .
oH '
xb z + (n - N ~Jk_ z
2z ° - JBnkzn cos( bb y)e Zn (34)
n=1 ’

Here, only positive going waves are assumed and the eigenfunctions and wave
number are expressed in the height of the exit duct by.

BOUNDARY CONDITIONS

A variety of boundary condition will be used in the finite element solu-
tion of equation (26) for the model problem which is displayed in schematic
form in figure 2. Each of the required conditions will now be briefly
discussed.

Input Condition

The analysis assumes a given number of propagating (see eq. (30)) A}
modes. These modes effectively set the level of the magnetic field in the
finite element region and can be viewed as the equivalent Dirchlet boundary
conditions required for eliptic boundary value problem as defined by
equation (26).

11



Perfect Conducting Wall Conditions

At a perfect conducting wall, the tangential component of the electric
field vector 1is zero (ref. 11, eq. 7-52a or ref. 12, eq. 1.69)

Et =0 (35)

Thus, for example,

Ex = E2 =0 (36)
Along any of the horizontal perfectly conducting surfaces of figure 2.
Since, the Hy equation (26) has been program for solution, the relationship
between E; given by equation (35) and Hy at the boundary must be developed.
In particular, the finite element analysis well require information on the
gradient of Hy at a perfect conducting boundary.

From equation (14), the Ez; component of Maxwell equation can be written
as (ref. 13, eqs. (1) to (4)).

B2 = Joe Lox ~ 3y (37)
or since Hy = 0
aH
1 X
EZ = - jwcT ay - (38)

Since E, 1s zero at perfect conducting horizontal boundary

3Hx
—3; =0 (39)

Now, since the finite element analysis will require information about
vV Hy at its boundary, let us expand at the upper horizontal boundary.

(aHx oH_ H_ )
VHx *n = VHX . ey =\lax & * y ey + 57 ez ). ey (40)

Since only the dot product ey o ey gives a contribution,

aHx
VHX N = _3; . (4])
Since the electric filed tangency condition for this problem requires . aH /ay
is zero (eq. (39)) _ X

VH, e n =0 (42)

at the upper horizontal surface. It is easily shown that this condition
applies to all perfect conducting surfaces no matter their spatial orientation.
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Continuity at Inlet and Exit

In general, the tangential component of an H field s continuous across

an interface (ref. 12, eq. (1.61)) except at perfect conductor where a surface
current exists (ref. 11, egs. 7-52(b)). Thus, the boundary condition becomes

Hyt = Hat (43)

or the tangential components are Hy
Hxa = Hx (2 = 0; 0 <y < ba) (44)

where Hyz 1s the modal representation of magnetic field in the analytical
inlet region given by equation (29) and ﬂ} represent the finite element
approximation for Hy at the interface. The hat over 'ﬁx implies an approx-

imate finite element numerical solution to be discussed in detaill in a follow-
ing section.

At the inlet interface, shown by the dashed 1ine in figure 2, the Hy,

in the analytical region given by equation (29) must match the magnetic field
defined by the finite element nodal points along the boundary interface. Many
possible matching methods can by employed for this boundary condition, such as
point collocation, least squares or weighted residuais. A weighted residual
approach was used herein with the weighting function equal to the

eigenfunctions
b
fa 3 ((m-])ry)dy o
) [Haly) - fit]eos\ ™,

z=0
(Nm equations, m = 1,2,3, Np) (45)

Equation (45) represents Np separate equations; one for each coefficient
defined in equation (29).

For a particular weighting function cos ((m - 1)wy/ba), a very simple
numerical approximation for the l1ine integral can be written as

I (m - 1)«y1
;E; [Hxa(yi) - Hi]cos ———-B;———- Ay1 =0 (z

0)

(Np equation, m = 1,2,3, . . . Np) (46)

where the Ayy 1s defined as shown in figure 4. Substituting in the value of
Hya from equation (29) yields, moving known A+ coefficients to right
hand side,

13



N _
I (m - V)wy m. _
Ay1 cos (-——-B————l) An cos Lﬂ—B-llI ¥4 -H1
= a e a ,

I : N
(m - 1)wy m L+ (n - 1wy
- E Ay, cos ——1 An cos {1
i ba ba
1=] n= (Z 0)
(Nm equations, m = 1,2, . . . Np) (47)

where the mth equation is defined by the first cosine term on both sides of
equation (47). In slightly different form

I 1
Z Z °°S( 1)°°5(L‘—L “1) 84 - Z Hy C“( {n ol V1)‘W1 =
3 a a
1=1
Nm I
+ (n - 1)«» m- 1)r
- Z A, Z cos ( b y1) cos( 5 y‘i)”i (z = 0)
» n=1 1=1 a a
(Nm separate equations. m = 1,2, . . . Np) (48)

The terms on the right side represent the known forcing functions to the
equation since all the values of A} are assumed known. The left hand side
contains the Ny unknown reflection coefficients and the unknown nodal values
of Hy at the finite element grid. Recall the modal equation used to specify
the oncoming and reflected field was truncated to contain Ny unknown reflec-
tion coefficients A]. A2, A3, e ANm' Equation (48) represents one of the

Nm scalar equations required to determine all An reflective coefficients.
At the exit, equation (45) becomes

b
b
f [be(y) - Fi(y)] cos (L'"—"T)-?El>dy =0
° z-L=20
(Nm equations, m = 1,2,3, . . . Nm) (49)

or in terms of the modes

N
? Bt I cos (D=1 cos (M= 1w A
> Bl b, ' b Yq) BYy
n=1 1=1 a
I
i bb i 3
1=1 (z = L)
(Nm separate equations, m = 1,2, . . . Nm) (50)

14




In contrast to equation (48), equation (50) has only the B; values as
unknown representing the positive going waves. No negative waves are assumed
in the exit. In addition, the exit occurs at z equals L; however, the Bt
coefficients have been redefined as follows

B; e 3KznZ . B; e(-jkan)e('jkzn(z-L))= gt el-Jk,(2Z-L))

on (51

or

N . +jkan

Bn = Bon e (52)

In this manner, the exponential terms do not appear in equation (50).

Gradient at Inlet and Exit

The last boundary condition required concerns the gradient of H, at
the inlet and outlet of the nonuniform finite element region. In the finite
element analysis to be developed in the next section, a contour integral term
will be developed which will contain the term VHy - n. At a perfect conduct-
ing wall, i1t was shown that this term is identical to zero. However, along
the entrance and exit interfaces, this term can be related to the modal equa-
tion in the analytical region. At the inlet

o (aﬁx o, ) o, -
e i-\gteyrm o) (o) -5 (53)
while at the exit
I N
WHoeio= et (54)

At the inlet and exit planes, continuity of the tangential component of
the electric field is required across the interface (ref. 12, eq. 1.60).
Employing equation (11) to express the tangential electric field in terms of
the magnetic field (ref. 13, eq. 7-4) yields

a1 Y (55)
3z e, 3z ,

For the special cases where the properties remain constant across the inter-
face, equations (53) and (54) simplify to the following forms:

~ o Xa
VHX- n=--=- (inlet) (56)

15



and
abe
3z

In general, the gradient of the magnetic field is continuous except when there
is a change in permittivity.

vﬁx- n =+ (exit) (57)

FINITE ELEMENT THEORY

The finite element formulation of the electromagnetic wave equation is
now generated by using the Galerkin method (ref. 14) to obtain an integral
form of the variable property wave equation over the whole (global) domain D
shown in figure 5.

System Discretization

The continuous domain D 1is first divided into a number of discrete
areas staked out by the nodal points as shown in figure 6. Although the nodal
points are shown evenly spaced in figure 6, the advantage of finite element
theory is that it allows the placement of nodes at any position desired.
Another attractive feature of the finite element theory is the ability to
charge element properties in an easy manner.

Next, the continuous magnetic field component Hy(y,z) will be approxi-
mated (curve fitted) in terms of the nodal potential values Hyxy Tlocated at
Y4, Z4, as shown in figure 6. The subscript 1 refers to any nodal point in
this domain. The curve fit is required since the variable properly wave equa-
tion will be integrated over the domain D shown in figure 5 and the curve
fit will allow us to determine the value of Hy 1inside the element. This
contrasts with the simplest form of finite difference theory (taylor series)
which usually only determines the values of the dependent variable at the
Tumped nodal points.

GLOBAL WEIGHTED RESIDUAL APPROACH

In the classical weighted residual manner, the magnetic field intensity
component H,(y,z) is curve fitted by expanding in terms of all the unknown
nodal values Hxi(yi,z) and a series of basis (shape) functions, such that

N
A (y,2) = 1):“.1 Wy(y,2)H ;= [W] {H,} (58)

where the bas1sﬁpr weight functions Wy (y,z) characterizes the spat1a1'
dependance of Hy(y,z) in terms of Hyxy which represents the unknown value

of the magnetic field intensity component at the 1 nodal point in the global
region. In the global approximation, the weight Wy has the property of

being unity at node 1 and identical to zero at all other nodes. As before in
equation (44) the hat over the Hy(y,z) indicates that it is the approximate
numerical solution to Hx(y,z). The nodes are numbered 1,2, . . . N and the
global vector {Hx} represents the scalar values of the unknown magnetic
intensity component Hyx at each node, such that in matrix form

16




Hx]
Hx2

X

.
(H } = or .{Hx} =[?x] g+« » Hyy o o HxN] (59)

x3

HXﬂ

Since Hx(y,z) is only an approximation to the true solution Hy(y,z),
substitution of equation (58) into the governing wave equation (26) and inte-
grating over the domain 0D shown in figure 5 will not be equal to zero, as
required by the exact solution but leave a residual error which is defined

as R
1~ 2 ~
//[v-——vu +pr]dde=R (60)
€r X X
D

In accordance with the method of weighted residuals, the assumed basis func-
tion W4 and the distribution of errors R are forced to be orthogonal
(Ry = 0) within the region by letting

1, 2n |
ﬂw1 (v."T VHx+muHx)dydz=ﬂ
D

(Y =1,2, . . . N equations) (61)

Thus, there are n separate equations (written in compact form); one equation
for each of the N nodal Hyy unknowns. In a direct analogy to the finite

difference weighted residual control-volume formulation (ref. 15, p. 30), each
of the above N equations represents a higher order difference approximation
at the nodal point 3 where W4 has a value of unity.
By making use of the vector identity of a scalar w and a vector V
Ve (yV) =9V e ViVevwy (62)

and by letting ¢ equal weight W; and V equal to /ey vﬁ&, equation (61)
can be expanded to

5 1o . 2 o _
/f [v . w1 e Hx - - VHX vw,' + N1w “Hx] dydz = 0
D

(Y =1,2, .. . N equation) (63)
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Finally, using the divergence theorem. of Gauss (ref. 16, p. 79, eq. 4.7(b)),

[[(V e V) dydz = f(v *n) ds (64)
D : S

where n is the unit outward normal vector to the boundary curve s, the
first term in equation (63) can be converted into a surface integral such that

L . 2 o 1 . & -
/][‘T ™, vFix - W “Hx] dydz - %(m T vFix n) ds = 0
D S

(i =1,2, . . . N equations) (65)

In effect, the second order differential equation has been reduced to a
first order equation allowing the use of the weak formulation of the finite
element theory. Thus in the Galerkin finite element approximation to follow,
simple class C, shape functions can be employed to approximate Wj. Across
an element shown in figure 6 for example, the class Cg functions are only
continuous in the dependent variable Hyx and are discontinuous in slope. If

the second order wave equation (61) is treated directly, then Hermitian calls
Cy functions are required to approximate Wy (ref. 7). In these class C

functions, both the variable and its slope are continuous across a boundary.

FINITE ELEMENT APPROXIMATION

Both the specification of the global weighting function W4 and the glo-
bal integration over the whole domain D 1in figure 5 required by equation (65)
are not practical. However, the integration can readily be performed by sub-
dividing the domain into smaller elements Ap, defining the global shape func-
tion W4 1in terms of the nodes of an individual element, integrating over an
individual element and summing all the elements together.

Equation (65) is valid over the entire domain D shown in figure 5 or any
subdomain Ag, as represented by the area of a small triangular element embed-
ded in the region as depicted in figure 5. To begin the finite element aspect
of the weighted residual method, the domain D 1is assumed to be divided into
M elements defined by N nodes, see figure 6. In this case, equation (65)
can be written as

M

1 . on 2 -~ 1 ox - B
2 : _[/};(cTe W, + W - o uewa1> dydz -'gg(w1 ‘TeVH" . n)ds =0
e=] e ) :

(1 =1,2, . . . N equations) (66)

Where the properties are now given a subscript e to indicate that they may
vary from element to element. Note, although the area integration in
equation (66) applies to an individual element, the line integral is still
defined over the global surface area, and as such, can be treated independ-
ently from the local area integrations.
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LOCAL SHAPE FACTORS

Each element is defined by the nodes around its perimeter, while Hyy
are defined at these nodes. However, the value of Hyy 1inside the element
are required to perform the integration. To represent the variation inside
the elements of the field variable Hy and its derivatives, local interpola-
tion shape functions N4(y,z) for linear triangles are written in both scalar
and matrix form as

) = Wy, = W& (2l + Wy, pnle) o+ W(®) (y,2yn(e)

3
nie) y(e) (e) (e)
= J}=:1 ] HXJ = [N] ng; (67)

where {Hy} (e) s the vector of nodal values of Hy for a general element
e with subscripts 1, 2, and 3 representing the nodal positions as shown in
figure 5. The subscripts 1, 2, and 3 take on the actual nodal number of
figure 6 when applied to a specific element.

The form of the local shape matrix [N] (e) depends on the type of element
ufsg. For the 1inear triangular element employed herein, the known value of
is simple in form and can really be found in nearly every test on finite

finite elements (ref. 6). Like its global counterpart H1, the local Nge)

has the property of being unity at node J and zero at the other nodes in the
triangle. A graphical description of N 1is shown in figure 3 of reference 14.

Replacing H by Hi ) in equation (66), the new governing finite element
equat1ons be&ame

Z ff L vw . VH(e) “1w2ueﬁ§e)) dydz - ‘¢‘ (N1 Z*Tevﬁf(E) . ﬁ)ds =0
S .

(4 =1,2, . . . N equations) (68)

GALERKIN APPROXIMATION

The weight W,(y,z) is now approximated by multiple values of N( ) (see
ref. 14, fig. 3). "Adapting the Galerkin approximation to the more gegera1
weighted residual approach assumes that

Wy(y,2) = N (y,2) (69)

in all elements containing the 1 node. For all elements which do not con-
tain the node 1, the weight Wy 1is assumed zero not only at all other
nodes (as required by the general definition of Wy) but also at all values
of y and z 1in the elements which do not contain the node 1.

Recognizing that N(e) is zero for all elements not having the unknown

Hyt associated with a pa}ticular element, the finite element equation (68)
can now be written in compact form as
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M .
1 oe), 5 (e) 2 =(e) (e) 1 - _

E ﬂ (c]’ VN1 * VHX - N1 « veHx ) dydz -%(N,‘ —cTe VHie) . n) ds =0

e=1 Ae € c

(Y =1,2, . ... N equations) (70)

where Nj are the known shape functions (ref. 6, eq. (3.05)). 1In general
most of the M elements in the summation will have(é?ro contribution, since
only if the 1 mode is part of the element will N have a nonzero value.
Likewise, the l1ine integral can only contribute to 3 particular 1 -equation,
if the node 1s on the boundary. For all interior n?gfs, the 1ine integral
term in equation (70) will not contribute, since N1 will have a zero value
on the boundary.

SURFACE INTEGRAL AND BOUNDARY CONDITIONS

The surface integral in equation (70) can be rewritten along the boundary
in figure 5 as

7{ (&) 1. x(e), = f (&) 1 [on . =
N VH enj)ds = N YVH e« n)ds
. ( i £re X ) i €1e ( X )

Entrance

(e) 1. (on .= (e) 1 (on . =
+ /N1 = (VHX n) ds+/N,' e (VHX n) ds (1)

Exit : PEC

As shown in equation (42), the gradient dotted into the outward normal 1is
jdentical to zero along a perfect electrical conductor (PEC); thus, the last
surface integral on the right hand side of equation (7!) is identical to zero.
In addition, at the entrance, the axial derivatives in the 1ine integral at
the entrance and exit planes represent the value of slope just inside the
finite element domain. They can be related to the slopes in the analytical
region through boundary condition equations (56) and (57). Therefore,

aH
?ﬁ(ngw R os - P L B,
€Te _ €Te

Entrance z=0

aH
(e) 1_ _x -
+ fﬂ1 —— Xl dy -0 (72)

EXIT Te 2=L

Thus, the finite element equation (70) can be rewritten as

M aH ‘
2 ou(e) (e)_ y(e) 2 (e)) jﬁ; (e) 21 x

Z UN * WH'"'- N; "w"u H dydz + N dy

o /L (c.l.e i X i e X i €1e Y4

Entrance z=0
aH
o Bl
Exit Te z=L
(¥ =1,2, . .. N equations)
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where the gradients in the finite element region 1h equation (73) at the
entrance and exit planes can be related to gradients in the entrance and exit
ducts, equations (32) and (34) through equation (55).

FINITE ELEMENT EQUATIONS

Expanding ﬁ(e)- interms of the weighting function equation (67), and
neglecting the sufface integrals for simpiicity in writing (exact for central
elements), equation (73) becomes

M
. {m(eY/;Jc_;e Nge) . [ony (8 wzveNge) v N aydz = 0
=] A
e

e

(¥ = 1,2, ... N equations) (74)

where the {Hx}(e) local magnetic field intensity component column vector can

be pulled outside the area integration since it does not depend on the area
coordinates.

Equation (74) could in principle be evaluated for each 1 to yield a set
of N simultaneous equations for the N wunknown value of H,4. However,

this approach is not readily implemented on a digital computer. Rather, each
element is treated independently and the contributions of a single element to
all N -equations defined by equation (74) are determine simultaneously from
the following ‘

(e) 1 on(e) (e)]_ .2, n(e) (e) .
{H.} —éfgﬁe N [vn ] W ugNy [N] dydz = 0

(J = ]9293) (75)
In contrast to the 1 subscript of equation (74) for all nodes in the global
domain, here the subscript 3 sums only the three nodes of a particular ele-

ment. In compact standard finite element form, equation (75) can be rewritten
as

x1 () g ¢ -0 (76)
where
K(e) 1 (e) (e) (e) (&) 2. (e) (e) :
1y = tre _/][N1y Njy +N1z sz - keN‘i NJ ] dydz = 0 (77)
e
with

2 2
ke = wu, €ro (78)
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For triangular elements, the evaluation of equation (77) is quite simple and
presented in many texts (ref. 18, p. 149, eq. (8.42) for the first two terms
and page 45 for the last term). The surface integral is evaluated in a simi-

lar manner. Shortly, a discussion is given on how equation (76) is used to
build up equation (74).

MODAL COEFFICIENTS

In addition to the N finite element global equations (eq. 74) required
to determine Hyy values, additional equations are required for each unknown
value A; and B{ which describe H, 1in the analytical entrance and exit
region to the finite element domain. The unknown coefficient Af and B}
couple to the finite element domain through the surface integral terms in
equation (73). For convenience in the finite element solution, the unknown
nodal coefficients Az and B} are incorporated into the global unknown
vector {Hy} such that

~ ~

x1* sz, . e . Hx1 - o« Hoy

T - - -~
{8} =[A1 Ny Ay

+

. B (79)
"

x?

B

-+
N+

GLOBAL FINITE ELEMENT EQUATIONS

Along with equations (48) and (50) which define the modes in the analyti-
cal region, using the standard finite element procedures (ref. 18) the elemen-
tal equation (76) can be assembled into equation (74) to yield the following
global set of simultaneous equations which can be solved to obtain the unknown
modal intensities Hyy and unknown coefficient Af and Bj:

(K] {#} = {F} (80)

Here, the column vector F contains boundary condition information which
includes input modal condition A+ (right hand side of equation (48). The
global stiffness matrix [K] is the sum of the known local stiffness matrix
[K](e) defined by equation (77). The solution of equation (80) by a banded
Gauss solver yielids &.

Next, the solution of equation (80) for a number of element discretiza-
tion patterns, absorber materials and nodal inputs will be considered.
RESULTS AND COMPARISONS
For theory and code validation, first the finite element solutions will
be applied to a number of problems where exact solutions exist. Next, the
finite element solutions will be applied to a number of problem with various

types of absorbers mounted on the walls,

In all the examples to follow, the properties of the entrance region are
assumed to be unity

(81)




In addition, the length of the finite element domain and height of the
entrance duct are held at unity.

For the 1inear element considered herein, the minimum required elements
in the axial and transverse direction can be calculated from a formula devel-

oped to give reasonable accuracy (ref. 7, eq. 48) using finite difference
theory.

Number axial element 2 12 L w/2r (82)
Number transverse elements > 12 (n - 1) n > 2 (83)

where n s the highest transverse mode to be resolved. In each example, a

pictorial of the grid discretization is shown directly above the plots of the
Hy spatial variations.

Example 1. - Plane Wave Propagation in Perfectly Conducting Duct

As the first example of the finite element technique, consider the
problem of an infinite long duct with perfectly conducting walls and with a
plane Hy, wave propagating to the right from - infinity with a frequency
of w = 2. For this case, the wave continues propagating to + infinity
without producing any reflected waves. The exact analytical expression for
Hy can be written (ref. 11, p. 457) as

—Jk]x
|Hx|= e = €0S 2¥x - 1 sin 2wx . (84)

As seen in figure 7, a comparison between the exact analytical results
and the finite element analysis shows very good agreement between both analy-
sis. The finite element analysis predicted A~ coeff1c1ents of zero for the
entrance region+(no reflections) and unity for the BT coefficient while
higher order B coefficients were appropriately near zero.

Figure 8 applies to the same example only the magnitude of the Hy wave
is displayed where the magnitude Hyx 1is defined as

IHy| = YRe(Hy)2 + Im(Hy)2 (85)

Figure 9 displayed the axial flux of energy (Poynting vector) defined by
(ref. 11, eq. (8-69)

1
Pivel¥ 2) = 5 Re (E x W (86)
oH
(y.2) = 5 Re 1 =2 (87)
ave wcT X 92

The total power radiated down the duct is given by

Py = fs ave (¥,2)dy (88)
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In all cases, the inlet total power is normalized as unity. Thus as expected
in figure 9, the total power remains at a unity value throughout the duct.

According to equation (87), the gradient of Hx 1is required to determine
the Poyning vector. In the analytical entrance and exit regions the gradient
can, of course, be determined exactly from the known analytical expressions.
However, in the finite element region some error is introduced since the gra-
dient is a constant throughout a triangular element (ref. 18, p. 30). This
requires many small elements to approximate a rapid change in the variable
Hy. However, if only the transmitted and reflected energy are required a
coarse finite element grid will suffice, since the analytical expressions for
the derivatives are known exactly. In figure 9, the small error in the finite
element region (z = 0 to 1) results from the coarse elements, smaller elements
will reduce this error.

Example 2. - Third Propagating Mode in Perfectly Conducting Duct

As the second example of the finite element technique, again consider the
prob]em of an infinitely long duct with perfectly conducting walls and the
(A ) wave propagating to the right from - infinity with a frequency of
6 971 (f = 1.1). Again for this case the wave continues propagating to +
1nf1n1ty without producing any reflected waves. The exact analytical expres-
sion for TM3g can be written according to equations (30) and (29) as

' 2

_ (3-1)(x) _
k23 =2 X 1.1 J - (2« X 1.1 = 2.881 . (89)
-szsz

H = e = cos 2.881z - J sin 2.881z (y = 0) ~(90)

where the frequency of the wave has been increased over the value of 1 in

example 1 to 1.1 so that the third mode is now propagating while the fourth
mode 1is cut off.

Again, as seen in figure 10 for the real and imaginary parts of H,,

and in figure 11 for the magnitude of Hyx, the finite element and exact
analytical results are in good agreement.

Example 3. - Reflection, Transmission, and Absorption of Plane Waves

As our next set of validation problems, consider the phenomenon of
reflection which occurs when a uniform plane wave is normally incident on the
boundary between regions composed of two different materials, as shown
figure 12. The exact analytical results are given in standard textbooks.
However, the exact analytical results have been slightly modified to account

for the fact that the incident plane wave contacts the interface at 2z equal
to Ld.
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The exact analytical equations can be written in the following form

Hi]) =Hey * er (z <Ly) ‘ (91)
Hey = Hig e N? (z < Ly) (92)
He = H e’ (z < Ly) (93)
W2 on, -H el (2> L) (94)

where the magnetic field in region (1) Hi]) is composed of an incident field

Hx4 and a reflected field Hyy whose magnitudes and propagation constants
are defined in equations (92) and (93) with

Y-I = + Jo V“]c] (CC‘\ = 0) ‘ (95)

In region (2), Hiz) s composed only of a transmitted magnetic intensity
deferred by equation (94) with

€
YZ = a,2 + sz = +Jm."u2£2 “’1 - j "::_2 (96)

(ref. 19, p. 388, eq. (32). For convenience in obtaining numerical results,
Y2 has been expressed in terms of ap (real part) and B, (imaginary part).
Or solving for ap and By (ref. 11, p. 364 P, 8-6 or ref. 12, p. 2-1)

T € 2 [1/2
B, = w ——%—3 [1.0+ 1+(—53)] (97)
€2

w2c M A€ € 2 /2
c2’2 _ v 22 " c2
@y = "og 5 =o ¥ 1 + ('—) -1 (98)

€2

At z = L4, the magnetic intensity in region (1) must be equal to the
magnetic intensity in region (2); consequently, equations (91) and (92) are
equated. Likewise, the incident and reflected electric fields in region (1)
must be equal to the transmitted electric field in region (2). The electric
fields can be expressed in terms of the magnetic fields by employing Maxwell's
equations. These two conservation equations can now be solved for the unknown
reflected Hyo, and transmitted H{, wave magnitudes in terms of the known
incident magnitude Hjy

H -2y, L
e _pe 1 (99)

H (v, - Y,)L
Hto e 2’ d (100)
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with the reflection T and transmission + coefficient defined as

r = ;l—f-gg (101)
2 1
(ref. 13, eq. 5-97)
T = ——Ezl—— (102)
"2t M

(ref. 13, eq. 5-98)

The impedance ny and n have the usual convenient definitions (for
positive values)

E
n=-pt (103)
X
(ref. 13, eq. 7-50)
oH
1 1 X
Ny = - VxH - (104)
1 j\vlc.n i j\nlc.” az El_]_
H - H - €
X X 1
PSR e S e (105)
M 1 UxE ° fx T, -
Jwu, 3z

The first case will consider a step change in permittivity from 1 to 4
at z equal to 0.25. As shown in figure 13, the z -equals 0.25 interface
occurs in the third row of elements which have been decreased in size to
account for the smaller wave length in the higher permittivity material. As
seen in figure 13, the finite element and exact analytical theories are in
excellent agreement. Note the shift in slope of the real component at the
interface which is automatically accounted for in the theory, because of vari-
able property assumption in equation (26). Figure 14 shows similar good
agreement between the finite element theory and the exact analytical results
for the absolute magnitude of the magnetic intensity H,. The reflections
from the interface are clearly represented by the standing wave pattern ahead
of the interface. Observe that the magnitude of H, 4increases in the mate-
rtal. The opposite effect will be seen in the next example. '

The second case considers a step change in permeability from 1 to 4 at
z equals to 0.05. 1In this case, the interface occurs immediately after the
very first row of elements shown in figure 15. As seen in figure 15, the
finite element and exact analytical theories are in excellent agreement. For
this particular example the slope is continuous throughout both domains as
expected since equation (55) indicates that the slope is continuous for
changes in permeability. Figure 16 shows similar good agreement between the
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finite element theory and the exact analytical results for the absolute magni-
tude of the magnetic intensity H,. Again the reflections are clearly rep-
resented by the standing wave pattern ahead of the interface. 1In contrast to
be previous example, the magnitude of H, decrease in the material.

The final case considers a step change in conductivity from 0 to 2 at z
equals 0.0. The jump in properties at z = 0 is handled through equation (55)
which is employed in the entrance and exit integrals of equation (73). As
seen in figure 17 a slight difference in the magnitude between the finite ele-
ment and analytical results occurs. The analytical solution was developed
from a three region model (ref. 11, p. 347). A similar curve was obtained
when the step change in conductivity was placed at z = 0.25 inside the finite
element region. Figure 18 shows a similar discrepancy for the Poynting vector.
The error could not be eliminated with finer grid; therefore, it was assumed
that the errors are a result of the discritization process which must be
resolved.

Example 4. - Wall Absorbers

Figure 19 shows a configuration with an absorber region along the upper
wall. For a wall material with a permeability of 1 and total permittivity of
1.-32., the energy attenuation is shown in figure 20. In figure 21, wall
absorbers are placed at the top and bottom of the duct. For wall material
with a permeability of 4.1 and permitivity of 1.-) 2.83, the wall absorption
is shown in figure 22.

Figure 23 displays contour plots of the magnitude of the magnetic field
for the absorber configuration shown in figure 21. The solid 1ine drawing
show the complete contours, while the symbol are piotted at selective points
in the companion figure so that the actual magnitude of the contour can be
readily determined. For convenience the magnitude of the magnetic field has
been renormalized between 0 and 1 according to the formula

lel Ime1n|

| - IH

|H | (106)

X l T
contour xmax xmin

where Hymax 1s the maximum value of magnitude of the magnetic field in the

plotting domain and Hxmin 35 the minimum value of Hy 1in the plotting
domain.

In figure 23(a) only one mode (plane wave) is assumed in the modal expan-
sion. In this case,

+
1

+

| 1

| = 1.0 |A7| = 0.231 |By| = 0.458

and the value of the Poynting vector at the exit has fallen from 1 to 0.210.
In figure 23(b) three modes are assumed in the modal expansion. In this case,
N

= 1.0 |A]| - 0.1426 |8y} = 0.598

4+
2

0.98x10"5

3] = 0.0 |A;] - 0.475107 8,

2|
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|as] = 0.0 |A3| = 0.664 |83] = 1-123

Because of the symmetrical nature of the magnetic field, the odd eigenfunc-
tions have near zero coefficients. For this case, the Poynting vector at the
exit has obtained a value of 0.358.

In the contour plot example shown in figure 23(c), five modes are assumed
in the modal expansion. In this case,

-

|AT] = 1.0 |A]| = 0.1246 [87] = 0.6501
a3l = 0.0 |ay] - 0.18ex10™t |B}] - 0.571x107
A3 = 0.0 |A3] = 0.6457 | B3l = 1.175
Af| = 0.0 [A;] = 0.376x107° |8 = 0.398x107°
|ag] = 0.0 |Ag| = 0.0145 |B| = 0.0264

For this case the Poynting vector at the exit was 0.423.

As seen in figure 23(c), the magnetic field has decreased to near zero at
the walls but remains relatively high in the center of the duct. 1In effect,
electromagnetic energy beams through the center of the duct. Future work will
consider reducing the energy of this central beam.

Finally, in the last contour plot example, seven modes are assumed in the

modal expansion. This contour plot was for practical purposes identical to
the plot shown in figure 23(c). In this case, the modal coefficients are

|a3] =10 |A7] = 0.1208 8| = 0.659

A;] = 0.0 [ay] = 0.0m8x07t  [y] = 11850007
|a5] = 0.0 |A3] = 0.6416 |83] = 1.160

Al = 0.0 [A;] = 0.555x107°  [B;] = 0.951x107°
|Az] = 0.0 |Ag| = 0.0141 |8 | = 0.0252

IAg] = 0.0 |ac| - 079000 |8f| - 0.950x107°
|a3] = 0.0 |A3| = 0.00286 67| = 0.00528

and the normalized Poynting vector at the exit was 0.435, which is very close
to the value when five modes were assumed. In this seven mode expansion, the
modal amplitudes of the first five modes are reasonably close to the values
when a five mode expansion was assumed. In addition, the amplitude of the

seventh mode is very small. Therefore, a five mode expansion leads to
convergence.
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Example 5. - Thin Layer Absorbers

The code has a zoom feature as shown in figure 24 for which the thin
layered region i1s expanded for ease in visualization. Now, any desired
properly variation in the material can be conveniently reproduced.

Figure 25 displays a multiple thin film region analyzed. The attenuation
of the region is shown in figure 26.

CONCLUDING REMARKS

The finite element method has been developed to handle the problem of
electromagnetic propagation in a duct with varying wall properties and geome-
tries. The numerical formulation is relatively simple to use and appears to
give very accurate results. For higher frequencies many wave lengths will
exist in the duct requiring a large number of elements. With the expanded
memory capability of the modern computer, the restriction does not represent a
severe limitation of the method.
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FIGURE 2.- TWO DIMENSIONAL WAVE GUIDE FINITE ELEMENT MODEL.
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FIGURE 4.- AREA INTEGRATION FOR THE INTERFACE CON-
TINUITY EQUATION,
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FIGURE 6.- DISCRETIZATION OF SOLUTION DOMAIN USING
TRIANGULAR ELEMENTS.




REAL - IMAG MAGNETIC INTENSITY. Hy

|
-

REAL (H,) | EXACT

————-- IMAG (H) § ANALYSIS
..2 —
| REAL (Hy) | NUMERICAL
o IMAG (Hy) | SOLUTION
-3 I | 1 1 | 1
1.0 -5 0 5 .0 1.5 2.0

AXIAL COORDINATE, z

FIGURE 7. - A COMPARISON OF THE AXIAL MAGNETIC INTENSITY
VARIATION ALONG THE LOWER WALL IN A UNIFORM DUCT WITH
PERFECTLY CONDUCTING WALLS AS OBTAINED BY USING AN
EXACT SOLUTION AND A FINITE ELEMENT SOLUTION FOR A
PLANE WAVE (MODE 1) INCIDENT AT Z = 0 WITH @ = 27.
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FIGURE 8.- A COMPARISON OF THE MAGNITUDE OF THE AXIAL
MAGNETIC INTENSITY VARIATION ALONG THE LOWER WALL IN
A UNIFORM DUCT WITH PERFECTLY CONDUCTING WALLS AS OB-
TAINED BY USING AN EXACT SOLUTION AND A FINITE ELEMENT
SOLUTION FOR A PLANE WAVE (MODE 1) INCIDENT AT Z = 0

WITH W= 27,
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FIGURE 9. - A COMPARISON OF THE AXIAL FLUX OF ENERGY
(POYNING VECTOR) VARIATION IN A UNIFORM DUCT WITH
PERFECTLY CONDUCTING WALLS AS OBTAINED BY USING AN
EXACT SOLUTION AND A FINITE ELEMENT SOLUTION FOR A
PLANE WAVE (MODE 1) INCIDENT AT Z = O,
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FIGURE 10. - A COMPARISON OF THE AXIAL MAGNETIC INTENSITY
VARIATION ALONG THE LOWER WALL IN A UNIFORM DUCT WITH
PERFECTLY CONDUCTING WALLS AS OBTAINED BY USING AN
EXACT SOLUTION AND A FINITE ELEMENT SOLUTION FOR MODE 3
(TM30) INCIDENT AT Z = 0 WITH @ = 6.911,
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FIGURE 11.- A COMPARISON OF THE MAGNITUDE OF THE AXIAL
MAGNETIC INTENSITY VARIATION ALONG THE LOWER WALL IN
A UNIFORM DUCT WITH PERFECTLY CONDUCTING WALLS AS OB-
TAINED BY USING AN EXACT SOLUTION AND A FINITE ELEMENT

SOLUTION FOR MODE-THREE INCIDENT (TMzq) AT Z = 0 WITH
W =6.911.
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FIGURE 12.- A PLANE WAVE (TM10) WITH NORMAL INCIDENCE
ON A PLANE BOUNDARY.
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FIGURE 13. - A COMPARISON OF THE AXIAL MAGNETIC INTENSITY

VARIATION ALONG THE LOWER WALL IN A UNIFORM DUCT WITH
PERFECTLY CONDUCTING WALLS AND A CHANGE IN PROPERTIES
OF THE MEDIA AT z oOF 0.25 (81 = 1.0 AND €y = 4.0) As

OBTAINED BY USING AN EXACT SOLUTION AND A FINITE ELEMENT
SOLUTION FOR A PLANE WAVE (MODE 1) INCIDENT AT Z = 0
WITH W = 27.
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FIGURE 14, - A COMPARISON OF THE MAGNITUDE OF THE AXIAL
MAGNETIC INTENSITY VARIATION ALONG THE LOWER WALL IN
A UNIFORM DUCT WITH PERFECTLY CONDUCTING WALLS AND A
CHANGE IN PROPERTIES OF THE MEDIA AT Z oF 0,25 (€1 =

1.0 AND €y = 4.0) AS OBTAINED BY USING AN EXACT SOLU-

TION AND A FINITE SOLUTION FOR A PLANE WAVE (MODE-ONE)
INCIDENT AT Z = 0 WITH O = 27T,
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FIGURE 15.~ A COMPARSION OF THE AXIAL MAGNETIC INTENSITY
VARIATION ALONG THE LOWER WALL IN A UNIFORM DUCT WITH
PERFECTLY CONDUCTING WALLS AND A CHANGE IN PROPERTIES
OF THE MEDIA AT Z OoF 0.05 (4, = 1.0 AND {5 = 4,0) As oB-
TAINED BY USING AN EXACT SOLUTION AND A FINITE ELEMENT
SOLUTION FOR A PLANE WAVE (MODE-ONE) INCIDENT AT Z = 0
WITH @ = 27,
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FIGURE 16.- A COMPARISON OF THE MAGNITUDE OF THE AXIAL
MAGNETIC INTENSITY VARIATIONS ALONG THE LOWER WALL IN
A UNIFORM DUCT WITH PERFECTLY CONDUCTING WALLS AND A
CHANGE IN PROPERTIES OF THE MEDIA AT 2z OF 0.05 By =

1.0 AND My = 4,0) AS OBTAINED BY USING AN EXACT SOLU-

TION AND A FINITE ELEMENT SOLUTION FOR A PLANE WAVE
(MODE-ONE) INCIDENT AT Z = 0 WITH (O = 2T.



ABSOLUTE MAGNETIC INTENSITY, IHX l

W

N

—

E1=1u1=1€2=1']2 uZ=1€3=1U3:1

e el e . sttt

EXACT ANALYSIS
NUMERICAL SOLUTION

1.0 -.5 0 .5 1.0 1.5 2.0
AXIAL COORDINATE, z

FIGURE 17. - A COMPARISON OF THE MAGNITUDE OF THE AXIAL
MAGNETIC INTENSITY VARIATIONS ALONG THE LOWER WALL IN
A UNIFORM DUCT WITH PERFECTLY CONDUCTING WALLS AND A
CHANGE IN PROPERTIES OF THE MEDIA AT Z OF 0.0 AS OB-
TAINED BY USING AN EXACT SOLUTION AND A FINITE ELE-
MENT SOLUTION FOR A PLANE WAVE (MODE-ONE) INCIDENT AT
Z =0 WITH @ = 2m,
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FIGURE 18. - A COMPARISON OF THE AXIAL FLUX OF ENERGY
(POYNTING VECTOR) VARIATION IN A UNIFORM DUCT WITH
PERFECTLY CONDUCTING WALLS AND A CHANGE IN PROPER-
TIES OF THE MEDIA AT zZ OF 0.0 AS OBTAINED BY USING
AN EXACT SOLUTION AND A FINITE ELEMENT SOLUTION FOR
A PLANE WAVE (MODE-ONE) INCIDENT AT Z = 0
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FIGURE 19.- DISCRETIZATION OF AIR FILLED WAVE GUIDE
WITH ABSORBERS MOUNTED ALONG THE UPPER WALL.
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FIGURE 20.- EFFECT OF UPPER WALL ABSORBER ON THE MAGNI-
TUDE OF THE AXIAL FLUX OF ENERGY (POYNTING VECTOR) FOR
A THREE-MODE MODAL EXPANSION IN THE ENTRANCE AND EXIT
DUCTS.
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FIGURE 21.- DISCRETIZATION OF AIR FILLED WAVE GUIDE
WITH ABSORBERS MOUNTED ALONG BOTH THE UPPER AND LOWER
WALLS.
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FIGURE 22.- EFFECT OF UPPER AND LOWER WALL ABSORBERS
ON THE MAGNITUDE OF THE AXIAL FLUX OF ENERGY (POYNTING
VECTOR) FOR A FIVE-MODE MODAL EXPANSION IN THE EN-
TRANCE AND EXIT DUCTS.
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FIGURE 23.- CONTOUR PLOTS OF MAGNETIC FIELD AMPLITUDE.
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FIGURE 25.- MULTIPLE THIN FILM WALL ABSORBER

0.75

CONF IGURATION (NOT

TO SCALE),

DIMENSIONLESS POYNTING AXIAL VECTOR

4~
3 L
2
,—NUMERICAL SOLUTION
1 Vi
0 | 1 | | | 1
-1.0 -.5 0 .5 1.0 1.5 2.0

AXIAL COORDINATE, z

FIGURE 26.- EFFECT OF MULTIPLE THIN FILM WALL ABSORBER
ON THE)MAGNITUDE OF THE AXIAL FLUX OF ENERGY (POYNTING
VECTOR) .
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